domingo, 16 de diciembre de 2007

Cientifico:Galileo Galilei




Galileo Galilei nació en Pisa el 15 de febrero de 1564. Lo poco que, a través de algunas cartas, se conoce de su madre, Giulia Ammannati di Pescia, no compone de ella una figura demasiado halagüeña. Su padre, Vincenzo Galilei, era florentino y procedía de una familia que tiempo atrás había sido ilustre; músico de vocación, las dificultades económicas lo habían obligado a dedicarse al comercio, profesión que lo llevó a instalarse en Pisa. Hombre de amplia cultura humanista, fue un intérprete consumado y un compositor y teórico de la música, cuyas obras sobre el tema gozaron de una cierta fama en la época. De él hubo de heredar Galileo no sólo el gusto por la música (tocaba el laúd), sino también el carácter independiente y el espíritu combativo, y hasta puede que el desprecio por la confianza ciega en la autoridad y el gusto por combinar la teoría con la práctica. Galileo fue el primogénito de siete hermanos de los que tres (Virginia, Michelangelo y Livia) hubieron de contribuir, con el tiempo, a incrementar sus problemas económicos. En 1574 la familia se trasladó a Florencia y Galileo fue enviado un tiempo al monasterio de Santa Maria di Vallombrosa, como alumno o quizá como novicio.
Juventud académica
En 1581 Galileo ingresó en la Universidad de Pisa, donde se matriculó como estudiante de medicina por voluntad de su padre. Cuatro años más tarde, sin embargo, abandonó la universidad sin haber obtenido ningún título, aunque con un buen conocimiento de Aristóteles. Entretanto, se había producido un hecho determinante en su vida: su iniciación en las matemáticas, al margen de sus estudios universitarios, y la consiguiente pérdida de interés por su carrera como médico. De vuelta en Florencia en 1585, Galileo pasó unos años dedicado al estudio de las matemáticas, aunque interesado también por la filosofía y la literatura (en la que mostraba sus preferencias por Ariosto frente a Tasso); de esa época data su primer trabajo sobre el baricentro de los cuerpos -que luego recuperaría, en 1638, como apéndice de la que habría de ser su obra científica principal- y la invención de una balanza hidrostática para la determinación de pesos específicos, dos contribuciones situadas en la línea de Arquímedes, a quien Galileo no dudaría en calificar de «sobrehumano».


Tras dar algunas clases particulares de matemáticas en Florencia y en Siena, trató de obtener un empleo regular en las universidades de Bolonia, Padua y en la propia Florencia. En 1589 consiguió por fin una plaza en el Estudio de Pisa, donde su descontento por el paupérrimo sueldo percibido no pudo menos que ponerse de manifiesto en un poema satírico contra la vestimenta académica. En Pisa compuso Galileo un texto sobre el movimiento, que mantuvo inédito, en el cual, dentro aún del marco de la mecánica medieval, criticó las explicaciones aristotélicas de la caída de los cuerpos y del movimiento de los proyectiles; en continuidad con esa crítica, una cierta tradición historiográfica ha forjado la anécdota (hoy generalmente considerada como inverosímil) de Galileo refutando materialmente a Aristóteles mediante el procedimiento de lanzar distintos pesos desde lo alto del Campanile, ante las miradas contrariadas de los peripatéticos...
En 1591 la muerte de su padre significó para Galileo la obligación de responsabilizarse de su familia y atender a la dote de su hermana Virginia. Comenzaron así una serie de dificultades económicas que no harían más que agravarse en los años siguientes; en 1601 hubo de proveer a la dote de su hermana Livia sin la colaboración de su hermano Michelangelo, quien había marchado a Polonia con dinero que Galileo le había prestado y que nunca le devolvió (por el contrario, se estableció más tarde en Alemania, gracias de nuevo a la ayuda de su hermano, y envió luego a vivir con él a toda su familia).
La necesidad de dinero en esa época se vio aumentada por el nacimiento de los tres hijos del propio Galileo: Virginia (1600), Livia (1601) y Vincenzo (1606), habidos de su unión con Marina Gamba, que duró de 1599 a 1610 y con quien no llegó a casarse. Todo ello hizo insuficiente la pequeña mejora conseguida por Galileo en su remuneración al ser elegido, en 1592, para la cátedra de matemáticas de la Universidad de Padua por las autoridades venecianas que la regentaban. Hubo de recurrir a las clases particulares, a los anticipos e, incluso, a los préstamos. Pese a todo, la estancia de Galileo en Padua, que se prolongó hasta 1610, constituyó el período más creativo, intenso y hasta feliz de su vida.
En Padua tuvo ocasión Galileo de ocuparse de cuestiones técnicas como la arquitectura militar, la castrametación, la topografía y otros temas afines de los que trató en sus clases particulares. De entonces datan también diversas invenciones, como la de una máquina para elevar agua, un termoscopio y un procedimiento mecánico de cálculo que expuso en su primera obra impresa: Le operazioni del compasso geometrico e militare, 1606. Diseñado en un principio para resolver un problema práctico de artillería, el instrumento no tardó en ser perfeccionado por Galileo, que amplió su uso en la solución de muchos otros problemas. La utilidad del dispositivo, en un momento en que no se habían introducido todavía los logaritmos, le permitió obtener algunos ingresos mediante su fabricación y comercialización.
En 1602 Galileo reemprendió sus estudios sobre el movimiento, ocupándose del isocronismo del péndulo y del desplazamiento a lo largo de un plano inclinado, con el objeto de establecer cuál era la ley de caída de los graves. Fue entonces, y hasta 1609, cuando desarrolló las ideas que treinta años más tarde, constituirían el núcleo de sus Discorsi.
El mensaje de los astros
En julio de 1609, de visita en Venecia (para solicitar un aumento de sueldo), Galileo tuvo noticia de un nuevo instrumento óptico que un holandés había presentado al príncipe Mauricio de Nassau; se trataba del anteojo, cuya importancia práctica captó Galileo inmediatamente, dedicando sus esfuerzos a mejorarlo hasta hacer de él un verdadero telescopio. Aunque declaró haber conseguido perfeccionar el aparato merced a consideraciones teóricas sobre los principios ópticos que eran su fundamento, lo más probable es que lo hiciera mediante sucesivas tentativas prácticas que, a lo sumo, se apoyaron en algunos razonamientos muy sumarios.


Sea como fuere, su mérito innegable residió en que fue el primero que acertó en extraer del aparato un provecho científico decisivo. En efecto, entre diciembre de 1609 y enero de 1610 Galileo realizó con su telescopio las primeras observaciones de la Luna, interpretando lo que veía como prueba de la existencia en nuestro satélite de montañas y cráteres que demostraban su comunidad de naturaleza con la Tierra; las tesis aristotélicas tradicionales acerca de la perfección del mundo celeste, que exigían la completa esfericidad de los astros, quedaban puestas en entredicho. El descubrimiento de cuatro satélites de Júpiter contradecía, por su parte, el principio de que la Tierra tuviera que ser el centro de todos los movimientos que se produjeran en el cielo. En cuanto al hecho de que Venus presentara fases semejantes a las lunares, que Galileo observó a finales de 1610, le pareció que aportaba una confirmación empírica al sistema heliocéntrico de Copérnico, ya que éste, y no el de Tolomeo, estaba en condiciones de proporcionar una explicación para el fenómeno.
Ansioso de dar a conocer sus descubrimientos, Galileo redactó a toda prisa un breve texto que se publicó en marzo de 1610 y que no tardó en hacerle famoso en toda Europa: el Sidereus Nuncius, el 'mensajero sideral' o 'mensajero de los astros', aunque el título permite también la traducción de 'mensaje', que es el sentido que Galileo, años más tarde, dijo haber tenido en mente cuando se le criticó la arrogancia de atribuirse la condición de embajador celestial.
El libro estaba dedicado al gran duque de Toscana Cósimo II de Médicis y, en su honor los satélites de Júpiter recibían allí el nombre de «planetas Medíceos». Con ello se aseguró Galileo su nombramiento como matemático y filósofo de la corte toscana y la posibilidad de regresar a Florencia, por la que venía luchando desde hacía ya varios años. El empleo incluía una cátedra honoraria en Pisa, sin obligaciones docentes, con lo que se cumplía una esperanza largamente abrigada y que le hizo preferir un monarca absoluto a una república como la veneciana, ya que, como él mismo escribió, «es imposible obtener ningún pago de una república, por espléndida y generosa que pueda ser, que no comporte alguna obligación; ya que, para conseguir algo de lo público, hay que satisfacer al público».
La batalla del copernicanismo
El 1611 un jesuita alemán, Christof Scheiner, había observado las manchas solares publicando bajo seudónimo un libro acerca de las mismas. Por las mismas fechas Galileo, que ya las había observado con anterioridad, las hizo ver a diversos personajes durante su estancia en Roma, con ocasión de un viaje que se calificó de triunfal y que sirvió, entre otras cosas, para que Federico Cesi le hiciera miembro de la Accademia dei Lincei que él mismo había fundado en 1603 y que fue la primera sociedad científica de una importancia perdurable.
Bajo sus auspicios se publicó en 1613 la Istoria e dimostrazione interno alle macchie solari, donde Galileo salía al paso de la interpretación de Scheiner, quien pretendía que las manchas eran un fenómeno extrasolar («estrellas» próximas al Sol, que se interponían entre éste y la Tierra). El texto desencadenó una polémica acerca de la prioridad en el descubrimiento, que se prolongó durante años e hizo del jesuita uno de los más encarnizados enemigos de Galileo, lo cual no dejó de tener consecuencias en el proceso que había de seguirle la Inquisición. Por lo demás, fue allí donde, por primera y única vez, Galileo dio a la imprenta una prueba inequívoca de su adhesión a la astronomía copernicana, que ya había comunicado en una carta a Kepler en 1597.
Ante los ataques de sus adversarios académicos y las primeras muestras de que sus opiniones podían tener consecuencias conflictivas con la autoridad eclesiástica, la postura adoptada por Galileo fue la de defender (en una carta dirigida a mediados de 1615 a Cristina de Lorena) que, aun admitiendo que no podía existir contradicción ninguna entre las Sagradas Escrituras y la ciencia, era preciso establecer la absoluta independencia entre la fe católica y los hechos científicos. Ahora bien, como hizo notar el cardenal Bellarmino, no podía decirse que se dispusiera de una prueba científica concluyente en favor del movimiento de la Tierra, el cual, por otra parte, estaba en contradicción con las enseñanzas bíblicas; en consecuencia, no cabía sino entender el sistema copernicano como hipotético. En este sentido, el Santo Oficio condenó el 23 de febrero de 1616 al sistema copernicano como «falso y opuesto a las Sagradas Escrituras», y Galileo recibió la admonición de no enseñar públicamente las teorías de Copérnico.


Galileo, conocedor de que no poseía la prueba que Bellarmino reclamaba, por más que sus descubrimientos astronómicos no le dejaran lugar a dudas sobre la verdad del copernicanismo, se refugió durante unos años en Florencia en el cálculo de unas tablas de los movimientos de los satélites de Júpiter, con el objeto de establecer un nuevo método para el cálculo de las longitudes en alta mar, método que trató en vano de vender al gobierno español y al holandés.
En 1618 se vio envuelto en una nueva polémica con otro jesuita, Orazio Grassi, a propósito de la naturaleza de los cometas, que dio como resultado un texto, Il Saggiatore (1623), rico en reflexiones acerca de la naturaleza de la ciencia y el método científico, que contiene su famosa idea de que «el Libro de la Naturaleza está escrito en lenguaje matemático». La obra, editada por la Accademia dei Lincei, venía dedicada por ésta al nuevo papa Urbano VIII, es decir, el cardenal Maffeo Barberini, cuya elección como pontífice llenó de júbilo al mundo culto en general y, en particular, a Galileo, a quien el cardenal había ya mostrado su afecto.
La nueva situación animó a Galileo a redactar la gran obra de exposición de la cosmología copernicana que ya había anunciado en 1610: el Dialogo sopra i due massimi sistemi del mondo, tolemaico e copernicano; en ella, los puntos de vista aristotélicos defendidos por Simplicio se confrontaban con los de la nueva astronomía abogados por Salviati, en forma de diálogo moderado por la bona mens de Sagredo. Aunque la obra fracasó en su intento de estar a la altura de las exigencias expresadas por Bellarmino, ya que aportaba, como prueba del movimiento de la Tierra, una explicación falsa de las mareas, la inferioridad de Simplicio ante Salviati era tan manifiesta que el Santo Oficio no dudó en abrirle un proceso a Galileo, pese a que éste había conseguido un imprimatur para publicar el libro en 1632. Iniciado el 12 de abril de 1633, el proceso terminó con la condena a prisión perpetua, pese a la renuncia de Galileo a defenderse y a su retractación formal. La pena fue suavizada al permitírsele que la cumpliera en su quinta de Arcetri, cercana al convento donde en 1616 y con el nombre de sor Maria Celeste había ingresado su hija más querida, Virginia, que falleció en 1634.
En su retiro, donde a la aflicción moral se sumaron las del artritismo y la ceguera, Galileo consiguió completar la última y más importante de sus obras: los Discorsi e dimostrazioni matematiche intorno à due nueve scienze, publicado en Leiden por Luis Elzevir en 1638. En ella, partiendo de la discusión sobre la estructura y la resistencia de los materiales, Galileo sentó las bases físicas y matemáticas para un análisis del movimiento, que le permitió demostrar las leyes de caída de los graves en el vacío y elaborar una teoría completa del disparo de proyectiles. La obra estaba destinada a convertirse en la piedra angular de la ciencia de la mecánica construida por los científicos de la siguiente generación, con Newton a la cabeza.
En la madrugada del 8 al 9 de enero de 1642, Galileo falleció en Arcetri confortado por dos de sus discípulos, Vincenzo Viviani y Evangelista Torricelli, a los cuales se les había permitido convivir con él los últimos años.

Cientifico: Albert Einstein


Albert Einstein sigue siendo una figura mítica de nuestro tiempo; más, incluso, de lo que llegó a serlo en vida, si se tiene en cuenta que su imagen, en condición de póster y exhibiendo un insólito gesto de burla, se ha visto elevada a la dignidad de icono doméstico, junto a los ídolos de la canción y los astros de Hollywood.
Sin embargo, no son su genio científico ni su talla humana los que mejor lo explican como mito, sino, quizás, el cúmulo de paradojas que encierra su propia biografía, acentuadas con la perspectiva histórica. Al Einstein campeón del pacifismo se le recuerda aún como al «padre de la bomba»; y todavía es corriente que se le atribuya la demostración del principio de que «todo es relativo» a él, que luchó encarnizadamente contra la posibilidad de que conocer la realidad significara jugar con ella a la gallina ciega.
Albert Einstein nació en la ciudad bávara de Ulm el 14 de marzo de 1879. Fue el hijo primogénito de Hermann Einstein y de Pauline Koch, judíos ambos, cuyas familias procedían de Suabia. Al siguiente año se trasladaron a Munich, en donde el padre se estableció, junto con su hermano Jakob, como comerciante en las novedades electrotécnicas de la época.
El pequeño Albert fue un niño quieto y ensimismado, que tuvo un desarrollo intelectual lento. El propio Einstein atribuyó a esa lentitud el hecho de haber sido la única persona que elaborase una teoría como la de la relatividad: «un adulto normal no se inquieta por los problemas que plantean el espacio y el tiempo, pues considera que todo lo que hay que saber al respecto lo conoce ya desde su primera infancia. Yo, por el contrario, he tenido un desarrollo tan lento que no he empezado a plantearme preguntas sobre el espacio y el tiempo hasta que he sido mayor».
Albert Einstein en 1947
En 1894, las dificultades económicas hicieron que la familia (aumentada desde 1881, por el nacimiento de una hija, Maya) se trasladara a Milán; Einstein permaneció en Munich para terminar sus estudios secundarios, reuniéndose con sus padres al año siguiente. En el otoño de 1896, inició sus estudios superiores en la Eidgenossische Technische Hochschule de Zurich, en donde fue alumno del matemático Hermann Minkowski, quien posteriormente generalizó el formalismo cuatridimensional introducido por las teorías de su antiguo alumno. El 23 de junio de 1902, empezó a prestar sus servicios en la Oficina Confederal de la Propiedad Intelectual de Berna, donde trabajó hasta 1909. En 1903, contrajo matrimonio con Mileva Maric, antigua compañera de estudios en Zurich, con quien tuvo dos hijos: Hans Albert y Eduard, nacidos respectivamente en 1904 y en 1910. En 1919 se divorciaron, y Einstein se casó de nuevo con su prima Elsa.
Durante 1905, publicó cinco trabajos en los Annalen der Physik: el primero de ellos le valió el grado de doctor por la Universidad de Zurich, y los cuatro restantes acabaron por imponer un cambio radical en la imagen que la ciencia ofrece del universo. De éstos, el primero proporcionaba una explicación teórica, en términos estadísticos, del movimiento browniano, y el segundo daba una interpretación del efecto fotoeléctrico basada en la hipótesis de que la luz está integrada por cuantos individuales, más tarde denominados fotones; los dos trabajos restantes sentaban las bases de la teoría restringida de la relatividad, estableciendo la equivalencia entre la energía E de una cierta cantidad de materia y su masa m, en términos de la famosa ecuación E = mc², donde c es la velocidad de la luz, que se supone constante.
Einstein con Elsa, su segunda esposa
El esfuerzo de Einstein lo situó inmediatamente entre los más eminentes de los físicos europeos, pero el reconocimiento público del verdadero alcance de sus teorías tardó en llegar; el Premio Nobel de Física, que se le concedió en 1921 lo fue exclusivamente «por sus trabajos sobre el movimiento browniano y su interpretación del efecto fotoeléctrico». En 1909, inició su carrera de docente universitario en Zurich, pasando luego a Praga y regresando de nuevo a Zurich en 1912 para ser profesor del Politécnico, en donde había realizado sus estudios. En 1914 pasó a Berlín como miembro de la Academia de Ciencias prusiana. El estallido de la Primera Guerra Mundial le forzó a separarse de su familia, por entonces de vacaciones en Suiza y que ya no volvió a reunirse con él.
Contra el sentir generalizado de la comunidad académica berlinesa, Einstein se manifestó por entonces abiertamente antibelicista, influido en sus actitudes por las doctrinas pacifistas de Romain Rolland. En el plano científico, su actividad se centró, entre 1914 y 1916, en el perfeccionamiento de la teoría general de la relatividad, basada en el postulado de que la gravedad no es una fuerza sino un campo creado por la presencia de una masa en el continuum espacio-tiempo. La confirmación de sus previsiones llegó en 1919, al fotografiarse el eclipse solar del 29 de mayo; The Times lo presentó como el nuevo Newton y su fama internacional creció, forzándole a multiplicar sus conferencias de divulgación por todo el mundo y popularizando su imagen de viajero de la tercera clase de ferrocarril, con un estuche de violín bajo el brazo.
Durante la siguiente década, Einstein concentró sus esfuerzos en hallar una relación matemática entre el electromagnetismo y la atracción gravitatoria, empeñado en avanzar hacia el que, para él, debía ser el objetivo último de la física: descubrir las leyes comunes que, supuestamente, habían de regir el comportamiento de todos los objetos del universo, desde las partículas subatómicas hasta los cuerpos estelares. Tal investigación, que ocupó el resto de su vida, resultó infructuosa y acabó por acarrearle el extrañamiento respecto del resto de la comunidad científica.
Einstein tocando el violín, una de sus aficiones favoritas
A partir de 1933, con el acceso de Hitler al poder, su soledad se vio agravada por la necesidad de renunciar a la ciudadanía alemana y trasladarse a Estados Unidos, en donde pasó los últimos veinticinco años de su vida en el Instituto de Estudios Superiores de Princeton, ciudad en la que murió el 18 de abril de 1955.
Einstein dijo una vez que la política poseía un valor pasajero, mientras que una ecuación valía para toda la eternidad. En los últimos años de su vida, la amargura por no hallar la fórmula que revelase el secreto de la unidad del mundo hubo de acentuarse por la necesidad en que se sintió de intervenir dramáticamente en la esfera de lo político. En 1939, a instancias de los físicos Leo Szilard y Paul Wigner, y convencido de la posibilidad de que los alemanes estuvieran en condiciones de fabricar una bomba atómica, se dirigió al presidente Roosevelt instándole a emprender un programa de investigación sobre la energía atómica.
Luego de las explosiones de Hiroshima y Nagasaki, se unió a los científicos que buscaban la manera de impedir el uso futuro de la bomba y propuso la formación de un gobierno mundial a partir del embrión constituido por las Naciones Unidas. Pero sus propuestas en pro de que la humanidad evitara las amenazas de destrucción individual y colectiva, formuladas en nombre de una singular amalgama de ciencia, religión y socialismo, recibieron de los políticos un rechazo comparable a las críticas respetuosas que suscitaron entre los científicos sus sucesivas versiones de la idea de un campo unificado.

Cientifico:Isaac Newton Las imagenes al principio







Obras de Isaac
Newton



Isaac Newton nació en las primeras horas del 25 de diciembre de 1642 (4 de enero de 1643, según el calendario gregoriano), en la pequeña aldea de Woolsthorpe, en el Lincolnshire. Su padre, un pequeño terrateniente, acababa de fallecer a comienzos de octubre, tras haber contraído matrimonio en abril del mismo año con Hannah Ayscough, procedente de una familia en otro tiempo acomodada. Cuando el pequeño Isaac acababa de cumplir tres años, su madre contrajo de nuevo matrimonio con el reverendo Barnabas Smith, rector de North Witham, lo que tuvo como consecuencia un hecho que influiría decisivamente en el desarrollo del carácter de Newton: Hannah se trasladó a la casa de su nuevo marido y su hijo quedó en Woolsthorpe al cuidado de su abuela materna.
Isaac Newton
Del odio que ello le hizo concebir a Newton contra su madre y el reverendo Smith da buena cuenta el que en una lista de «pecados» de los que se autoinculpó a los diecinueve años, el número trece fuera el haber deseado incendiarles su casa con ellos dentro. Cuando Newton contaba doce años, su madre, otra vez viuda, regresó a Woolsthorpe, trayendo consigo una sustanciosa herencia que le había legado su segundo marido (y de la que Newton se beneficiaría a la muerte de ella en 1679), además de tres hermanastros para Isaac, dos niñas y un niño.
La manzana de Newton
Un año más tarde Newton fue inscrito en la King's School de la cercana población de Grantham. Hay testimonios de que en los años que allí pasó alojado en la casa del farmacéutico, se desarrolló su poco usual habilidad mecánica, que ejercitó en la construcción de diversos mecanismos (el más citado es un reloj de agua) y juguetes (las famosas cometas, a cuya cola ataba linternas que por las noches asustaban a sus convecinos). También se produjo un importante cambio en su carácter: su inicial indiferencia por los estudios, surgida probablemente de la timidez y el retraimiento, se cambió en feroz espíritu competitivo que le llevó a ser el primero de la clase, a raíz de una pelea con un compañero de la que salió vencedor.
Fue un muchacho «sobrio, silencioso, meditativo», que prefirió construir utensilios, para que las niñas jugaran con sus muñecas, a compartir las diversiones de los demás muchachos, según el testimonio de una de sus compañeras femeninas infantiles, quien, cuando ya era una anciana, se atribuyó una relación sentimental adolescente con Newton, la única que se le conoce con una mujer.
Cumplidos los dieciséis años, su madre lo hizo regresar a casa para que empezara a ocuparse de los asuntos de la heredad. Sin embargo, el joven Isaac no se mostró en absoluto interesado por asumir sus responsabilidades como terrateniente; su madre, aconsejada por el maestro de Newton y por su propio hermano, accedió a que regresara a la escuela para preparar su ingreso en la universidad.
Éste se produjo en junio de 1661, cuando Newton fue admitido en el Trinity College de Cambridge, y se matriculó como fámulo, ganando su manutención a cambio de servicios domésticos, pese a que su situación económica no parece que lo exigiera así. Allí empezó a recibir una educación convencional en los principios de la filosofía aristotélica (por aquel entonces, los centros que destacaban en materia de estudios científicos se hallaban en Oxford y Londres), pero en 1663 se despertó su interés por las cuestiones relativas a la investigación experimental de la naturaleza, que estudió por su cuenta.
Manuscrito de Newton
Fruto de esos esfuerzos independientes fueron sus primeras notas acerca de lo que luego sería su cálculo de fluxiones, estimuladas quizá por algunas de las clases del matemático y teólogo Isaac Barrow; sin embargo, Newton hubo de ser examinado por Barrow en 1664 al aspirar a una beca y no consiguió entonces inspirarle ninguna opinión especialmente favorable.
Al declararse en Londres la gran epidemia de peste de 1665, Cambridge cerró sus puertas y Newton regresó a Woolsthorpe. En marzo de 1666 se reincorporó al Trinity, que de nuevo interrumpió sus actividades en junio al reaparecer la peste, y no reemprendió definitivamente sus estudios hasta abril de 1667. En una carta póstuma, el propio Newton describió los años de 1665 y 1666 como su «época más fecunda de invención», durante la cual «pensaba en las matemáticas y en la filosofía mucho más que en ningún otro tiempo desde entonces».
El método de fluxiones, la teoría de los colores y las primeras ideas sobre la atracción gravitatoria, relacionadas con la permanencia de la Luna en su órbita en torno a la Tierra, fueron los logros que Newton mencionó como fechados en esos años, y él mismo se encargó de propagar, también hacia el final de su vida, la anécdota que relaciona sus primeros pensamientos sobre la ley de la gravedad con la observación casual de una manzana cayendo de alguno de los frutales de su jardín (Voltaire fue el encargado de propagar en letra impresa la historia, que conocía por la sobrina de Newton).
La óptica
A su regreso definitivo a Cambridge, Newton fue elegido miembro becario del Trinity College en octubre de 1667, y dos años más tarde sucedió a Barrow en su cátedra. Durante sus primeros años de docencia no parece que las actividades lectivas supusieran ninguna carga para él, ya que tanto la complejidad del tema como el sistema docente tutorial favorecían el absentismo a las clases. Por esa época, Newton redactó sus primeras exposiciones sistemáticas del cálculo infinitesimal que no se publicaron hasta más tarde. En 1664 o 1665 había hallado la famosa fórmula para el desarrollo de la potencia de un binomio con un exponente cualquiera, entero o fraccionario, aunque no dio noticia escrita del descubrimiento hasta 1676, en dos cartas dirigidas a Henry Oldenburg, secretario de la Royal Society; el teorema lo publicó por vez primera en 1685 John Wallis, el más importante de los matemáticos ingleses inmediatamente anteriores a Newton, reconociendo debidamente la prioridad de este último en el hallazgo.
El procedimiento seguido por Newton para establecer la fórmula binomial tuvo la virtud de hacerle ver el interés de las series infinitas para el cálculo infinitesimal, legitimando así la intervención de los procesos infinitos en los razonamientos matemáticos y poniendo fin al rechazo tradicional de los mismos impuesto por la matemática griega. La primera exposición sustancial de su método de análisis matemático por medio de series infinitas la escribió Newton en 1669; Barrow conoció e hizo conocer el texto, y Newton recibió presiones encaminadas a que permitiera su publicación, pese a lo cual (o quizá precisamente por ello) el escrito no llegó a imprimirse hasta 1711.
Tampoco en las aulas divulgó Newton sus resultados matemáticos, que parece haber considerado más como una herramienta para el estudio de la naturaleza que como un tema merecedor de atención en sí; el capítulo de la ciencia que eligió tratar en sus clases fue la óptica, a la que venía dedicando su atención desde que en 1666 tuviera la idea que hubo de llevarle a su descubrimiento de la naturaleza compuesta de la luz. En febrero de 1672 presentó a la Royal Society su primera comunicación sobre el tema, pocos días después de que dicha sociedad lo hubiera elegido como uno de sus miembros en reconocimiento de su construcción de un telescopio reflector. La comunicación de Newton aportaba la indiscutible evidencia experimental de que la luz blanca era una mezcla de rayos de diferentes colores, caracterizado cada uno por su distinta refrangibilidad al atravesar un prisma óptico.
Réplica del telescopio de Newton
Newton consideró, con justicia, que su descubrimiento era «el más singular, cuando no el más importante, de los que se han hecho hasta ahora relativos al funcionamiento de la naturaleza». Pero sus consecuencias inmediatas fueron las de marcar el inicio de cuatro años durante los que, como él mismo le escribió a Leibniz en diciembre de 1675, «me vi tan acosado por las discusiones suscitadas a raíz de la publicación de mi teoría sobre la luz, que maldije mi imprudencia por apartarme de las considerables ventajas de mi silencio para correr tras una sombra».
El contraste entre la obstinación con que Newton defendió su primacía intelectual allí donde correspondía que le fuese reconocida (admitiendo sólo a regañadientes que otros pudieran habérsele anticipado) y su retraimiento innato que siempre le hizo ver con desconfianza la posibilidad de haberse de mezclar con el común de los mortales, es uno de los rasgos de su biografía que mejor parecen justificar la caracterización de su temperamento como neurótico; un diagnóstico que la existencia de sus traumas infantiles no ha hecho más que abonar, y que ha encontrado su confirmación en otras componentes de su personalidad como la hipocondría o la misoginia.
Los Principia
El primero en oponerse a las ideas de Newton en materia de óptica fue Robert Hooke, a quien la Royal Society encargó que informara acerca de la teoría presentada por aquél. Hooke defendía una concepción ondulatoria de la luz, frente a las ideas de Newton, precisadas en una nueva comunicación de 1675 que hacían de la luz un fenómeno resultante de la emisión de corpúsculos luminosos por parte de determinados cuerpos. La acritud de la polémica determinó que Newton renunciara a publicar un tratado que contuviera los resultados de sus investigaciones hasta después de la muerte de Hooke y, en efecto, su Opticks no se publicó hasta 1704. Por entonces, la obra máxima de Newton había ya visto la luz.
En 1676 Newton renunció a proseguir la polémica acerca de su teoría de los colores y por unos años, se refugió de nuevo en la intimidad de sus trabajos sobre el cálculo diferencial y en su interés (no por privado, menos intenso) por dos temas aparentemente alejados del mundo sobrio de sus investigaciones sobre la naturaleza: la alquimia y los estudios bíblicos. La afición de Newton por la alquimia (John Maynard Keynes lo llamó «el último de los magos») estaba en sintonía con su empeño por trascender el mecanicismo de observancia estrictamente cartesiana que todo lo reducía a materia y movimiento y llegar a establecer la presencia efectiva de lo espiritual en las operaciones de la naturaleza.
Newton no concebía el cosmos como la creación de un Dios que se había limitado a legislarlo para luego ausentarse de él, sino como el ámbito donde la voluntad divina habitaba y se hacía presente, imbuyendo en los átomos que integraban el mundo un espíritu que era el mismo para todas las cosas y que hacía posible pensar en la existencia de un único principio general de orden cósmico. Y esa búsqueda de la unidad en la naturaleza por parte de Newton fue paralela a su persecución de la verdad originaria a través de las Sagradas Escrituras, persecución que hizo de él un convencido antitrinitario y que seguramente influyó en sus esfuerzos hasta conseguir la dispensa real de la obligación de recibir las órdenes sagradas para mantener su posición en el Trinity College.
Traducción italiana de los Principia
En 1679 Newton se ausentó de Cambridge durante varios meses con motivo de la muerte de su madre, y a su regreso en el mes de noviembre, recibió una carta de Hooke, por entonces secretario de la Royal Society, en la que éste trataba de que Newton restableciera su contacto con la institución y le sugería la posibilidad de hacerlo comentando las teorías del propio Hooke acerca del movimiento de los planetas. Como resultado, Newton reemprendió una correspondencia sobre el tema que, con el tiempo, habría de desembocar en reclamaciones de prioridad para Hooke en la formulación de la ley de la atracción gravitatoria; por el momento, su efecto fue el de devolverle a Newton su interés por la dinámica y hacerle ver que la trayectoria seguida por un cuerpo que se moviera bajo el efecto de una fuerza inversamente proporcional al cuadrado de las distancias, tendría forma elíptica (y no sería una espiral, como él creyó en principio, dando pie a ser corregido por Hooke).
Cuando cinco años más tarde Edmond Halley, quien por entonces había ya observado el cometa que luego llevó su nombre, visitó a Newton en Cambridge y le preguntó cuál sería la órbita de un planeta si la gravedad disminuyese con el cuadrado de la distancia, su respuesta fue inmediata: una elipse. Maravillado por la rapidez con que Newton consideraba resuelto un asunto en cuyo esclarecimiento andaban compitiendo desde hacía varios meses Hooke y el propio Halley, éste inquirió cómo podía conocer Newton la forma de la curva y obtuvo una contestación tajante: «La he calculado». La distancia que iba entre el atisbo de una verdad y su demostración por el cálculo marcaba la diferencia fundamental entre Hooke y Newton, a la par que iluminaba sobre el sentido que este último daría a su insistente afirmación de «no fingir hipótesis».
Newton según el visionario pintor William Blake
Sin embargo, en aquel día del verano de 1684 Newton no pudo encontrar sus cálculos para mostrárselos a Halley, y éste tuvo que conformarse con la promesa de que le serían enviados una vez rehechos. La reconstrucción, empero, chocó con un obstáculo: demostrar que la fuerza de atracción entre dos esferas es igual a la que existiría si las masas de cada una de ellas estuviesen concentradas en los centros respectivos. Newton resolvió ese problema en febrero de 1685, tras comprobar la validez de su ley de la atracción gravitatoria mediante su aplicación al caso de la Luna; la idea, nacida veinte años antes, quedó confirmada entonces merced a la medición precisa del radio de la Tierra realizada por el astrónomo francés Jean Picard.
El camino quedaba abierto para reunir todos los resultados en un tratado sobre la ciencia del movimiento: los Philosophiae naturalis principia mathematica (Los principios matemáticos de la filosofía natural). La intervención de Halley en la publicación de la obra no se limitó a la de haber sabido convencer a su autor de consentir en ella, algo ya muy meritorio tratándose de Newton; Halley supo capear el temporal de la polémica con Hooke, se encargó de que el manuscrito fuese presentado en abril de 1686 ante la Royal Society y de que ésta asumiera su edición, para acabar corriendo personalmente con los gastos de la impresión, terminada en julio de 1687.
De Cambridge a Londres
Los Principia contenían la primera exposición impresa del cálculo infinitesimal creado por Newton, aunque éste prefirió que, en general, la obra presentara los fundamentos de la física y la astronomía formulados en el lenguaje sintético de la geometría. Newton no fue el primero en servirse de aquel tipo de cálculo; de hecho, la primera edición de su obra contenía el reconocimiento de que Leibniz estaba en posesión de un método análogo. Sin embargo, la disputa de prioridades en que se enzarzaron los partidarios de uno y otro determinó que Newton suprimiera la referencia a Leibniz en la tercera edición de 1726. El detonante de la polémica (orquestada por el propio Newton entre bastidores) lo constituyó la insinuación de que Leibniz podía haber cometido plagio, expresada en 1699 por Nicolas Fatio de Duillier, un matemático suizo admirador de Newton, con el que mantuvo una íntima amistad de 1689 a 1693.
Ese año Newton atravesó por una crisis paranoica de la que se ha tratado de dar diversas explicaciones, entre las que no ha faltado, desde luego, la consistente en atribuirla a la ruptura de su relación con el joven Fatio, relación que, por otra parte, no parece que llevara a Newton a traspasar las férreas barreras de su código moral puritano. Los contemporáneos de Newton popularizaron la improbable explicación de su trastorno como consecuencia de que algunos de sus manuscritos resultaran destruidos en un incendio; más recientemente se ha hablado de una lenta y progresiva intoxicación derivada de sus experimentos alquímicos con mercurio y plomo. Por fin, no pueden olvidarse como causa plausible de la depresión las dificultades que Newton encontró para conseguir un reconocimiento público más allá del estricto ámbito de la ciencia, reconocimiento que su soberbia exigía y cuya ausencia no podía interpretar sino como resultado de una conspiración de la historia.
Pese a la dificultad de su lectura, los Principia le habían hecho famoso en la comunidad científica y Newton había formado parte en 1687 de la comisión que la Universidad de Cambridge envió a Londres para oponerse a las medidas de catolización del rey Jacobo II. Aunque quizá su intervención se debió más a su condición de laico que a su fama, ello le valió ser elegido por la universidad como representante suyo en el parlamento formado como consecuencia del desembarco de Guillermo de Orange y el exilio de Jacobo II a finales de 1688.
Su actividad parlamentaria, que duró hasta febrero de 1690, se desarrolló en estrecha colaboración con Charles Montagu, más tarde lord Halifax, a quien había conocido pocos años antes como alumno en Cambridge y que fue el encargado de dar cumplimiento a los deseos de Newton de cambiar su retiro académico en Cambridge por la vida pública en Londres. Montagu fue nombrado canciller de la hacienda real en abril de 1694; cuando su ley de reacuñación fue aprobada en 1695, le otorgó a Newton el cargo de inspector de la Casa de la Moneda, siendo ascendido al de director en 1699. Lord Halifax acabó por convertirse en el amante de la sobrina de Newton, aunque los cargos obtenidos por éste, pese a las acusaciones lanzadas por Voltaire, no tuvieron que ver con el asunto.
Busto de Newton
A fines de 1701 Newton fue elegido de nuevo miembro del parlamento como representante de su universidad, pero poco después renunció definitivamente a su cátedra y a su condición de fellow del Trinity College, confirmando así un alejamiento de la actividad científica que se remontaba, de hecho, a su llegada a Londres. En 1703, tras la muerte de Hooke y una vez que el final de la reacuñación había devuelto la tranquilidad de una sinecura a la dirección de la Casa de la Moneda, Newton fue elegido presidente de la Royal Society, cargo que conservó hasta su muerte. En 1705 se le otorgó el título de sir. Pese a su hipocondría, alimentada desde la infancia por su condición de niño prematuro, Newton gozó de buena salud hasta los últimos años de su vida; a principios de 1722 una afección renal lo tuvo seriamente enfermo durante varios meses y en 1724 se produjo un nuevo cólico nefrítico. En los primeros días de marzo de 1727 el alojamiento de otro cálculo en la vejiga marcó el comienzo de su agonía: Newton murió en la madrugada del 20 de marzo, tras haberse negado a recibir los auxilios finales de la Iglesia, consecuente con su aborrecimiento del dogma de la Trinidad.

Cientifico: Nicolas Copèrnico


Nicolas Copèrnico

(Torun, actual Polonia, 1473-Frauenburg, id., 1543) Astrónomo polaco. Nacido en el seno de una rica familia de comerciantes, Nicolás Copérnico quedó huérfano a los diez años y se hizo cargo de él su tío materno, canónigo de la catedral de Frauenburg y luego obispo de Warmia.
En 1491 Copérnico ingresó en la Universidad de Cracovia, siguiendo las indicaciones de su tío y tutor. En 1496 pasó a Italia para completar su formación en Bolonia, donde cursó derecho canónico y recibió la influencia del humanismo italiano; el estudio de los clásicos, revivido por este movimiento cultural, resultó más tarde decisivo en la elaboración de la obra astronómica de Copérnico.
Nicolás Copérnico
No hay constancia, sin embargo, de que por entonces se sintiera especialmente interesado por la astronomía; de hecho, tras estudiar medicina en Padua, Nicolás Copérnico se doctoró en derecho canónico por la Universidad de Ferrara en 1503. Ese mismo año regresó a su país, donde se le había concedido entre tanto una canonjía por influencia de su tío, y se incorporó a la corte episcopal de éste en el castillo de Lidzbark, en calidad de su consejero de confianza.
Fallecido el obispo en 1512, Copérnico fijó su residencia en Frauenburg y se dedicó a la administración de los bienes del cabildo durante el resto de sus días; mantuvo siempre el empleo eclesiástico de canónigo, pero sin recibir las órdenes sagradas. Se interesó por la teoría económica, ocupándose en particular de la reforma monetaria, tema sobre el que publicó un tratado en 1528. Practicó así mismo la medicina, y cultivó sus intereses humanistas.
Hacia 1507, Copérnico elaboró su primera exposición de un sistema astronómico heliocéntrico en el cual la Tierra orbitaba en torno al Sol, en oposición con el tradicional sistema tolemaico, en el que los movimientos de todos los cuerpos celestes tenían como centro nuestro planeta. Una serie limitada de copias manuscritas del esquema circuló entre los estudiosos de la astronomía, y a raíz de ello Copérnico empezó a ser considerado como un astrónomo notable; con todo, sus investigaciones se basaron principalmente en el estudio de los textos y de los datos establecidos por sus predecesores, ya que apenas superan el medio centenar las observaciones de que se tiene constancia que realizó a lo largo de su vida.
En 1513 Copérnico fue invitado a participar en la reforma del calendario juliano, y en 1533 sus enseñanzas fueron expuestas al papa Clemente VII por su secretario; en 1536, el cardenal Schönberg escribió a Copérnico desde Roma urgiéndole a que hiciera públicos sus descubrimientos. Por entonces, él ya había completado la redacción de su gran obra, Sobre las revoluciones de los orbes celestes, un tratado astronómico que defendía la hipótesis heliocéntrica.
El texto se articulaba de acuerdo con el modelo formal del Almagesto de Tolomeo, del que conservó la idea tradicional de un universo finito y esférico, así como el principio de que los movimientos circulares eran los únicos adecuados a la naturaleza de los cuerpos celestes; pero contenía una serie de tesis que entraban en contradicción con la antigua concepción del universo, cuyo centro, para Copérnico, dejaba de ser coincidente con el de la Tierra, así como tampoco existía, en su sistema, un único centro común a todos los movimientos celestes.